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Abstract—Energy consumption has become a great deal for cloud
service providers due to financial as well as environmental concerns.
As a result, cloud service providers are seeking innovative ways that
allow them to reduce the amounts of energy that their data centers
consume. They are calling for the development of new energy-
efficient techniques that are suitable for their data centers. The
services offered by the cloud computing paradigm have unique
specificities that distinguish them from traditional services, giving
rise to new design challenges as well as opportunities when it
comes to developing energy-aware resource allocation techniques
for cloud computing data centers. In this article, we highlight key
resource allocation challenges, and present some potential solution
approaches for reducing cloud data center energy consumption.
Special focus is given to power management techniques that exploit
the virtualization technology to save energy. Several experiments,
based on real traces from a Google cluster, are also presented to
support some of the claims we make in this article.

I. WHY WORRY ABOUT ENERGY?
Energy efficiency has become a major concern in large data

centers. In the United States, data centers consumed about 1.5%
of the total generated electricity in 2006, an amount that is
equivalent to the annual energy consumption of 5.8 million
households [1]. In US dollars, this translates into power costs
of 4.5 billion per year. Data center owners, as a result, are eager
now more than ever to save energy in any way they can in order
to reduce their operating costs.

There are also increasing environmental concerns that too call
for the reduction of the amounts of energy consumed by these
large data centers, especially after reporting that the Information
and Communication Technology (ICT) itself contributes about
2% to the global carbon emissions [2]. These energy costs and
carbon footprints are expected to increase rapidly in the future
as data centers are anticipated to grow significantly both in size
and in numbers due to the increasing popularity of their offered
services. All of these factors have alerted industry, academia,
and government agencies to the importance of developing and
coming up with effective solutions and techniques that can
reduce energy consumption in data centers.

Cloud data centers are examples of such large data centers
whose offered services are gaining higher and higher popularity,
especially with the recently witnessed increasing reliance of
mobile devices on cloud services [3, 4]. Our focus in this article
is then on energy consumption efficiency in cloud data centers.
We start the article by first introducing the cloud paradigm. We
then explain the new challenges and opportunities that arise when
trying to save energy in cloud centers. We then describe the most
popular techniques and solutions that can be adopted by cloud
data centers to save energy. Finally, we provide some conclusions
and directions for future work.

II. THE CLOUD PARADIGM

In the cloud paradigm, a cloud provider company owns a
cloud center which consists of a large number of servers also
called physical machines (PMs). These PMs are grouped into
multiple management units called clusters, where each cluster
manages and controls a large number of PMs, typically in the
order of thousands. A cluster can be homogeneous in that all
of its managed PMs are identical, or it could be heterogeneous
in that it manages PMs with different resource capacities and
capabilities.

Cloud providers offer these computing resources as a service
for their clients and charge them based on their usage in a pay-
as-you-go fashion. Cloud clients submit requests to the cloud
provider, specifying the amount of resources that they need to
perform certain tasks. Upon receiving a client request, the cloud
provider scheduler creates a virtual machine (VM), allocates the
requested resources to it, chooses one of the clusters to host
the VM and assigns the VM to one of the PMs within that
cluster. Client requests are thus also referred to as VM requests.
After this allocation process takes place, the client can then use
its allocated resources to perform its tasks. Throughout the VM
lifetime, the cloud provider is expected, as well as committed, to
guarantee and ensure a certain level of quality of service to the
client. The allocated resources are released only once the client’s
task completes.

III. NEW CHALLENGES, NEW OPPORTUNITIES

Energy efficiency has been a hot topic even before the ex-
istence of the cloud paradigm where the focus was on saving
energy in laptops and mobile devices in order to extend their
battery lifetimes [5–7]. Many energy saving techniques that were
initially designed for this purpose were also adopted by the cloud
servers in order to save energy. Dynamic voltage and frequency
scaling and power gating are examples of such techniques. What
is different in cloud centers is that we now have a huge number
of servers that need to be managed efficiently. What makes this
further challenging is the fact that cloud centers need to support
on-demand, dynamic resource provisioning, where clients can, at
any time, submit VM requests with various amounts of resources.
It is this dynamic provisioning nature of computing resources
that makes the cloud computing concept a great one. Such
a flexibility in resource provisioning gives rise, however, to
several new challenges in resource management, task scheduling,
and energy consumption, just to name a few. Furthermore, the
fact that cloud providers are committed to provide and ensure
a certain quality of service to their clients requires extreme
prudence when applying energy saving techniques, as they may



degrade the quality of the offered service, thereby possibly
violating Service Level Agreements (SLAs) between the clients
and the cloud provider.

The good news after mentioning these challenges is that the
adoption of the virtualization technology by the cloud paradigm
brings many new opportunities for saving energy that are not
present in non-virtualized environments as we will see in this
article. Furthermore, the fact that cloud clusters are distributed
across different geographic locations creates other resource man-
agement capabilities that can result in further energy savings if
exploited properly and effectively.

IV. ENERGY CONSERVATION TECHNIQUES

We present in this section the most popular power management
techniques for cloud centers by explaining the basic ideas behind
these techniques, the challenges that these techniques face, and
how these challenges can be addressed. We limit our focus on the
techniques that manage entire cloud centers and that rely on the
virtualization capabilities to do so rather than on those designed
for saving energy in a single server, as the later techniques are
very general and are not specific to cloud centers. Readers who
are interested in power management techniques at the single
server level may refer to [8] for more details.

Experiments conducted on real traces obtained from a Google
cluster are also included in this section to further illustrate the
discussed techniques. Some of these experiments are based on
our prior work [9, 10] and others were conducted by us for
the sake of supporting the explained techniques. As for the
Google traces, they were publicly released in November 2011
and consists of traces collected from a cluster that contains
more than 12 thousand PMs. The cluster is heterogeneous as
the PMs have different resource capacities. The traces include
all VM requests received by the cluster over a 29-day period.
For each request, the traces include the amount of CPU and
memory resources requested by the client, as well as a timestamp
indicating the request’s submission and release times. Since the
size of the traces is huge, we limit our analysis to chunks of
these traces. Further details on these traces can be found in [11].

The energy-efficient techniques for managing cloud centers
that we discuss in this article are divided into the following
categories: workload prediction, VM placement and workload
consolidation, and resource overcommitment.

A. Workload Prediction

One main reason for why cloud center energy consumption is
very high is because servers that are ON but idle do consume
significant amounts of energy, even when they are doing nothing.
In fact, according to a Google study [12], the power consumed
by an idle server can be as high as 50% of the server’s peak
power. To save power, it is therefore important to switch servers
to lower power states (such as sleep state) when they are not in
use. However, a simple power management scheme that turns a
PM to sleep once it becomes idle and switches a new PM ON
whenever it is needed cannot be effective. This is due to the fact
that switching a PM from a power state to another incurs high
energy and delay overheads. As a result, the amount of energy
consumed due to switching an idle PM back ON when needed
can be much greater than the amount of energy saved by having

the PM stay in an idle state (as opposed to keeping it ON) while
not needed. This of course depends on the duration during which
the PM is kept idle before it is switched back ON again. That
is, if the PM will not be needed for a long time, then the energy
to be saved by switching it off can be higher than that to be
consumed to switch the PM back ON when needed.

In addition, clients will experience some undesired delay due
to waiting for idle PMs to be turned ON before their requested
resources can be allocated.

These above facts call for prediction techniques that can be
used to estimate future cloud workloads so as to appropriately
decide whether and when PMs need to be put to sleep and when
they need to be awaken to accommodate new VM requests.
However, predicting cloud workloads can be very challenging
due to the diversity as well as the sporadic arrivals of client
requests, each coming at a different time and requesting different
amounts of various resources (CPU, memory, bandwidth etc.).
The fact that there are infinite possibilities for the combinations
of the requested amounts of resources associated with these
requests requires classifying requests into multiple categories,
based on their resource demands. For each category, a separate
predictor is then needed to estimate the number of requests
of that category, which allows to estimate the number of PMs
that are to be needed. Using these predictions, efficient power
management decisions can then be made, where an idle PM
is switched to sleep only if it is predicted that it will not be
needed for a period long enough to compensate the overhead to
be incurring due to switching it back ON later when needed.

Classifying requests into multiple categories can be done via
clustering techniques. Fig. 1 shows the categories obtained from
applying clustering techniques on a chunk of observed traces
from the Google data. These four categories capture the resource
demands of all requests submitted to the Google cluster. Each
point in Fig. 1 represents an observed request and the two
dimensional coordinates correspond to the requested amounts
of CPU and memory resources. Each request is mapped into
one and only one category and different color/shape are used
to differentiate the different categories. Category 1 represents
VM requests with small amounts of CPU and small amounts
of memory; Category 2 represents VM requests with medium
amounts of CPU and small amounts of memory; Category 3
represents VM requests with large amounts of memory (and any
amounts of requested CPU). Category 4 represents VM requests
with large amounts of CPU (and any amounts of requested
memory). The centers for these categories are marked by ’x’.

Once clustering is done, the number of requests to be received
in each category is then predicted, and each predicted request
is assumed to have demanded resource amounts equal to those
corresponding to the category center it belongs to. Recall that
these predictions can be a little off, leading to an under- or
over-estimation of the number of requests. Under-estimating the
number of future requests results in extra delays when allocating
cloud resources to clients due to the need for waking up machines
upon arrival of any unpredicted request(s). In order to reduce the
occurrences of such cases, a safety margin can be added to the
number of predicted requests to accommodate such variations.
The cost of this safety margin is that some PMs will need to
be kept idle even though they may or may not be needed. We
propose to use a dynamic approach for selecting the appropriate



Fig. 1: The resulting four categories for Google traces.

safety margin value, where the value depends on the accuracy of
predictors—it increases when the predictions deviate much from
the actual number of requests and decreases otherwise. Fig. 2
shows both the actual and the predicted (with and without safety
margin) requests of the third category that were received at the
Google cluster. Observe that the predictions with safety margin
form an envelope above the actual number of requests, and the
more accurate the predictions are, the tighter the envelop is.

The question that arises now is how much energy can one
save by applying such a prediction-based power management? To
answer this question, we measure and plot in Fig. 3 the amount
of energy saved when using the prediction-based technique when
compared to the case when no power management is employed—
no power management means that the cluster leaves all PMs ON
as it does not know how many PMs will be needed in future.
For the sake of comparison, we also plot in the same figure
the amount of energy saved when optimal power management
is employed, which corresponds to the case when predictors
know the exact numbers of future VM requests, as well as the
exact amounts of CPU and memory associated with each request
(i.e., perfect prediction). This represents the best-case scenario
and serves here as an upper bound. The figure shows that
the prediction-based power management achieves great energy
savings, and that the amount of saved energy is very close to
the optimal one. The gap between the prediction-based power
management and the optimal one is due to prediction errors and
to the redundant PMs that are left ON as a safety margin.

It is worth mentioning that the energy savings of the
prediction-based power management plotted in Fig. 3 vary de-
pending on the workload demands. These savings are high under
light workloads as many redundant PMs will be switched to
sleep, thereby increasing the energy savings. And they decrease
as the workload increases, since the higher the workload, the
greater the number of PMs that are predicted to be kept ON,
and hence, the lesser the energy savings the prediction-based
approach makes over the no-power management approach; i.e.,
when compared to when all PMs are kept ON.

B. VM Placement and Workload Consolidation

Cloud centers are typically made up of multiple clusters dis-
tributed in different geographic locations. When a cloud provider
receives a VM request, its scheduler has to first decide which
cluster should host the submitted request. The geo-diversity of
the clusters’ locations can be exploited to reduce the center’s
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Fig. 2: Actual versus predicted number of requests for category
3.
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Fig. 3: Energy savings.

electricity bills by assigning submitted requests to clusters with
the cheapest power prices. Since electricity prices exhibit tempo-
ral variations, developing good power price prediction techniques
is needed and can be very beneficial to make efficient cluster
selections. Clusters’ sources of energy can also be considered
during this selection process where a request can be assigned to
the cluster with the highest reliance on green sources of power
in order to reduce carbon emissions.

Once a cluster is selected, the next question that arises is
which PM within the cluster should be chosen to host the
submitted request? One of the great advantages that virtualization
technology has is that it allows to place multiple requests,
possibly coming from different clients, on the same PM. This
enables to consolidate workloads on fewer servers, resulting in
saving energy by turning to sleep as many servers as possible.
The problem of deciding which PMs the submitted VM requests
should be assigned to such that the number of ON PMs is
minimized is referred to as the VM consolidation problem.

The VM consolidation problem is treated as the classical
online Bin Packing (BP) optimization problem, which views
VMs as objects and PMs as bins, and where the objective is to
pack these objects in as few bins as possible. The objects (VMs)
have different sizes (resource demands) and the bins (PMs) have
different capacities (resource capacities). The problem here is
an ’online’ problem because VM requests arrive in real time,
and must be assigned to PMs as they arrive. The online BP
problem is known to be NP-hard [13], and thus approximation
heuristics, such as First Fit, Next Fit, and Best Fit, have been
proposed instead to make VM-PM placement decisions. These
heuristics tend to turn a new PM ON to host a submitted VM



request only when the request cannot be fitted in any already ON
PMs. However, they differ in how they select the PM (to host
the submitted request) among the multiple ON PMs that fits the
submitted request. The Best Fit heuristic, for example, chooses
the ON PM with the least free space (least slack) that can fit
the submitted request. The intuition here is that placing requests
on the PM with the least slack results in leaving other ON PMs
with large slack for supporting future requests with larger sizes.

Another technique, also pertaining to virtualization, that turns
out to be very useful for VM consolidation is VM Migration,
where already assigned VMs can be migrated (moved) from one
PM to another. VM migration enables new VM-PM mappings,
which can be used to concentrate the sparse workload (caused by
the release of some VMs) on a smaller subset of PMs, thereby
allowing the rest to be turned to sleep to save energy. One key
problem with this technique is that VM migration incurs energy
overhead [14], and thus should be performed only when the
performance gains due to migration outweigh the overhead to
be incurred when performing such a migration.

Rather than resorting to new VM-PM mappings to address
workload sparsity, another potential solution would be to con-
sider VMs’ release times when making PM placement decisions.
The idea here is to place VMs with similar release times together
on the same PM, allowing PMs hosting VMs with short lifetimes
to be turned to sleep quickly. Of course here it is assumed that
the completion/release times of VM requests are known when
VMs are submitted. This could be specified directly by the client
or could be predicted based on the type of task the VM will be
performing and/or based on the previous behavior of the client.

Fig. 4 shows the number of PMs needed to be ON to support
all VM requests that were submitted to the Google cluster
when different heuristics are used to make VM-PM placement
decisions. The Random heuristic places each submitted request
in any ON PM that can fit the request, whereas the Best Fit
heuristic places the submitted request on the ON PM with the
least slack. The Release-Time Aware Heuristic, on the other
hand, accounts for the release time of VMs when deciding where
to place VMs. The results in Fig. 4 clearly show that the PM
selection strategy has a significant impact on the number of
PMs in the cluster that need to be kept active/ON. The Random
heuristic uses the largest number of PMs, as it encounters many
cases where the submitted requests were too large to fit any
already ON PMs, and thus forcing a new PM to be switched
ON. Whereas by selecting the PM with the least slack, the BF
heuristic is able to pack the workload more tightly, thus reducing
the number of PMs that are needed to be active. Knowing the
time at which the requests are to be released gives the Release-
Time Aware heuristic an advantage by allowing it to place short-
lived VMs on the same PMs so that they can be turned to sleep
early to save energy. The corresponding energy costs associated
with running the Google cluster throughout the 30-hour period
are also reported in Fig. 5 where the costs are normalized with
respect to the Random heuristic costs. The BF and the Release-
Time Aware heuristics save respectively around 20% and 30%
of the total costs when compared to the Random heuristic.

It is worth mentioning that the Release-Time Aware heuristic
is an enhanced version of the Best Fit heuristic in which the time
dimension is considered and the release time of VMs is taken
into account in order to make more efficient placement decisions.
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Fig. 4: Number of ON PMs over time when different heuristics
are used to place the requests submitted to the Google cluster.

0

20

40

60

80

100

N
or

m
al

iz
ed

 T
ot

al
 E

ne
rg

y 
C

os
ts

 (
%

)
 

 

Best Fit Heuristic
Release−Time Aware Heuristic

Fig. 5: Total energy overhead incurred from running the Google
cluster under different placement heuristics (normalized w.r.t. the
Random heuristic).

When the release times of VMs are not known ahead of time,
the Release-Time Aware heuristic drops the time dimension and
thus behaves similarly to the Best Fit heuristic; i.e., it makes
placement decisions similar to those made by the Best Fit
heuristic.

C. Resource Overcommitment

We have discussed so far the case where the cluster scheduler
allocates, for each created VM, the exact amount of resources
that is requested by the client, and locks these allocated resources
for the VM during its entire lifetime (i.e., reserved resources
are released only when the VM completes). A key question
that arises now, which is the main motivation behind using the
technique to be discussed in this section as a way of saving
energy, is: what is the amount/percentage of these reserved
resources that is actually being utilized? In order to answer this
question, using real Google data, we measure and show in Fig.
6 the percentage of the utilized (CPU and memory) resources
allocated by a Google cluster to its VM requests during one day.
Observe that only about 35% of the requested CPU resources and
55% of the requested memory resources are actually utilized.

Our measurement study indicates that cloud resources tend
to be overly reserved, leading to substantial CPU and memory
resource wastage. In other words, many PMs are turned ON, but
utilized only partially, which in turn translates into substantial
energy consumption. Two reasons, among others, are behind
such a resource over-reservation tendency:

1) Clients usually do not know the exact amount of resources
their applications would need. Thus, they tend to reserve
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Fig. 6: One-day snapshot of aggregate utilization of the reserved
CPU and memory resources of the Google cluster.

more resources than needed in order to guarantee safe
execution of their applications.

2) The utilization of VM resources, by nature of some of the
applications hosted on these VMs, may vary over time, and
may rarely be equal to its peak. For example, a VM hosting
a web server would possibly be utilizing its requested
computing resources fully only during short periods of the
day, while during the rest of the day, the reserved resources
are way under-utilized.

Resource overcommitment [15] is a technique that has been
adopted as a way for addressing the above-mentioned resource
under-utilization issues. It essentially consists of allocating VM
resources to PMs in excess of their actual capacities, expecting
that these actual capacities will not be exceeded since VMs
are not likely to utilize their reserved resources fully. Overcom-
mitment has great potential for increasing overall PM resource
utilization, resulting thus in making great energy savings as VMs
are now hosted on a smaller number of PMs, which allows more
PMs to be turned into lower power states.

One major problem that comes with overcommitment is PM
overload, where an overload occurs when the aggregate amount
of resources requested by the scheduled VMs exceeds the hosting
PM capacity. When an overload occurs, some or all of the
VMs running on the overloaded PM will witness performance
degradation, and some VMs may even crash, possibly leading
to the violation of SLAs between the cloud and its clients. The
good news is that the virtualization technology allows to avoid,
or to at least handle, these overloads. It does so by migrating
VMs to under-utilized or idle PMs whenever a PM experiences
or is about to experience an overload.

In essence, there are three key questions that need to be
answered when it comes to developing resource overcommitment
techniques that can be used to save energy in cloud centers:

i) What is the overcommitment level that the cloud should
support? What is an acceptable resource overcommitment
ratio, and how can such a ratio be determined?

ii) When should VM migrations be triggered to reduce/avoid
the performance degradation consequences that may result
from PM overloading?

iii) Which VMs should be migrated when VM migration deci-
sions are made, and which PMs should these migrated VMs
migrate to?

One potential approach that can be used to address the first
question is prediction. That is, one can predict future resource
utilizations of scheduled VMs, and use these predictions to deter-
mine the overcommitment level that the cloud should support. As

for addressing the second question, one can also develop suitable
prediction techniques that can be used to track and monitor
PM loads to predict any possible overload incidents, and use
these predictions to trigger VM migrations before overloads can
actually occur. It can be triggered when for e.g. the aggregate
predicted demands for the VMs hosted on a specific PM exceeds
the PM’s capacity.

The third question can be addressed by simply migrating as
few VMs as possible, reducing then energy and delay overheads
that can be incurred by migration. To avoid new PM overloads,
one can for e.g. select the PM with the largest free slack to be
the destination of the migrated VMs. These are just few simple
ideas, but of course a more thorough investigation needs to be
conducted in order to come up with techniques that can address
these challenges effectively.

In summary, resource overcommitment has great potential for
reducing cloud center energy consumption, but still requires the
investigation and development of sophisticated resource man-
agement techniques that enable it to do so. Not much research
has been done in this regard, and we are currently working on
developing techniques that address these challenges.

It is also worth mentioning that overcommitment would not
be possible without the capabilities brought by the virtualization
technology, which enables real-time, dynamic/flexible allocation
of resources to hosted VMs and eases the migration of VMs
across PMs in order to avoid PM overloads.

V. CONCLUSION

We discussed in this article the key challenges and opportuni-
ties for saving energy in cloud data centers. In summary, great
energy savings can be achieved by turning more servers into
lower power states and by increasing the utilization of the already
active ones. Three different, but complementary, approaches to
achieve these savings were discussed in the article, which are:
workload prediction, VM placement and workload consolidation,
and resource overcommitment. The key challenges that these
techniques face were also highlighted, and some potential ways
that exploit virtualization to address these challenges were also
described with the aim of making cloud data centers more energy
efficient.
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